
Temporal Changes in the Areal Coverage of Daily Extreme Precipitation in the
Northeastern United States Using High-Resolution Gridded Data

ARTHUR T. DEGAETANO, GRIFFIN MOOERS, AND THOMAS FAVATA

Northeast Regional Climate Center, Department of Earth and Atmospheric Science, Cornell University, Ithaca, New York

(Manuscript received 30 August 2019, in final form 11 December 2019)

ABSTRACT

Time-dependent changes in extreme precipitation occurrence across the northeastern United States are

evaluated in terms of areal extent. Using gridded precipitation data for the period from 1950 to 2018, polygons

are defined that are based on isohyets corresponding to extreme daily precipitation accumulations. Across the

region, areal precipitation is characterized on the basis of the annual and seasonal number of extreme pre-

cipitation polygons and the area of the polygons. Using the subset of grid points that correspond to station

locations in the northeastern United States, gridded precipitation replicates the observed trends in extreme

precipitation based on station observations. Although the number of extreme precipitation polygons does not

change significantly through time, there is a marked increase in the area covered by the polygons. Themedian

annual polygon area nearly doubles from 1950 to 2013. Consistent results occur for percentiles other than the

median and a range of extreme precipitation amount thresholds, with the most pronounced changes observed

in spring and summer. Like trends in station data, outside the northeastern United States trends in extreme

precipitation polygon area are negative, particularly in the western United States, or they are not statistically

significant. Collectively, the results suggest that the increases in heavy precipitation frequency and amount

observed at stations in the northeastern United States are a manifestation of an expansion of the spatial area

over which extreme precipitation occurs rather than a change in the number of unique extreme precipitation

polygons.

1. Introduction

Increases in extreme and total precipitation across

regions of the United States and the country as a whole

have been well documented in the literature (e.g.,

Kunkel et al. 2013a; Peterson et al. 2013; Hayhoe et al.

2007). The northeastern United States (Northeast),

however, stands out as the region of the United States

in which changes in extreme precipitation have been

the most pronounced. The iconic Wuebbles et al.

(2017) figure shows a 55% change in 99th-percentile

precipitation and a 92% change in 5-yr-annual-recur-

rence 2-day precipitation events during the 1958–2016

period. The figure also illustrates the contrast in ex-

treme precipitation trends between the eastern and

western United States, with little significant change in

extreme precipitation noted over theWest Coast (Mass

et al. 2011).

Typically, these studies have relied on station ob-

servations from the Global Historical Climatology

Network (GHCN; Menne et al. 2012). In terms of total

annual precipitation, Hayhoe et al. (2007) found a

10mmdecade21 increase through the twentieth century.

This matched Kunkel et al. (2013b), who, using climate

division data, found an increase in total annual precipi-

tation of 10.2mmdecade21 from 1895 to 2011, as well as

Keim et al. (2005), Mauget (2006), and, for New York,

Rosenzweig et al. (2011). However, Huang et al. (2017)

report a somewhat lower, but still significant, linear

trend of 6.0mmdecade21 based on GHCN data for the

period 1901–2014.

In terms of extreme precipitation, changes in both

frequency and intensity have been reported (e.g.,

Kunkel et al. 2013a; Pryor et al. 2009; DeGaetano

2009; Lai and Dzombak 2019; Armal et al. 2018). On a

national basis, station-based extreme precipitation de-

fined based on 2-day totals exceeding the 20% annual

recurrence probability are most pronounced in the
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northeastern United States, where the number of events

in the most recent decade are the largest since 1895

when the record began (Kunkel et al. 2013a). The trend

in accumulated precipitation from daily events ex-

ceeding the 99th percentile is most significant in the

Northeast for the period from 1957 to 2010, and it is also

significant in the midwestern and southeastern United

States (Kunkel et al. 2013a). Conversely, significant

extreme precipitation trends are absent in the western

United States.

On the global scale, changes in extreme precipitation

have been linked to the human-caused increase in at-

mospheric greenhouse gases (e.g., Min et al. 2011) with a

connection to increases in atmospheric water vapor.

Kunkel et al. (2013a) observe that there has been a

significant increase in atmospheric moisture associated

with extreme precipitation events, especially over east-

ern parts of the United States. However, other mecha-

nisms also control extreme precipitation occurrence.

Hoerling et al. (2016) argue that, over the southern

United States, changes in precipitation extremes have

been driven by teleconnections linked to eastern Pacific

sea surface temperatures, but they could not ascribe a

definitive large-scale cause to the changes observed in

the Northeast. On the synoptic scale, Kunkel et al.

(2012) found that a majority of the 20%-recurrence-

interval events were associated with extratropical storm

systems. Barlow (2011) showed that hurricanes con-

tributed to the wettest days, but other studies (e.g.,

Groisman et al. 2012) do not find a link between in-

creased precipitation extremes and tropical cyclones.

Prein et al. (2017) point to changes in organized con-

vective storms as a mechanism for increased future ex-

treme precipitation.

A commonality of the studies cited above is the use

of station-based precipitation records. Few studies

have explored the use of gridded precipitation datasets

to examine trends in precipitation extremes at loca-

tions other than those represented by GHCN stations.

Huang et al. (2017) compared GHCN station data

with a gridded station data product (Livneh et al. 2013)

and North American Regional Reanalysis (NARR)

output (Mesinger et al. 2006). They found that the

Livneh data replicated regionally averaged annual

and seasonal total station precipitation well (typically

within 3%) and also captured the observed trends

and a 2002 changepoint detected in the station data.

NARR, on the other hand, underestimated total and

seasonal precipitation by as much as 10% and was

unable to capture the trends found in the station data.

Huang et al. (2017) defined extreme precipitation as

that exceeding the 99th percentile of nonzero precipita-

tion amounts. Annual (seasonal) extreme precipitation

was then calculated as the sum of daily precipitation ex-

ceeding the threshold. Using this metric, they found that

although the Livneh dataset was able to satisfactorily

reproduce the seasonality and magnitude of extreme

precipitation, it did not capture the trends or replicate a

mid-1990s changepoint. The NARR data also under-

estimated extreme precipitation and did not give trends

that were consistent with the observations.

A few studies have examined changes in the spatial

extent of extreme rainfall. Wasko et al. (2016) used

gauge data and found a reduction in the area of most

intense precipitation at the storm scale. Chang et al.

(2016) reached a similar conclusion using model output

and radar data, while Dwyer and O’Gorman (2017)

found mixed results when assessing changes in the zonal

length of storm precipitation in model simulations.

There is an apparent dearth of studies that have ex-

amined changes in the spatial extent of extreme pre-

cipitation from a long-term climatological perspective.

In this study we address this gap using analyses based on

three gridded in situ precipitation datasets and a fourth

satellite-estimated precipitation product. Rather than

examining precipitation trends at individual grid points,

spatially coherent polygons enclosing multiple grid

points experiencing precipitation above a specific ex-

treme threshold are identified. Time series of the

number and area of these polygons are then assessed

for time-dependent trends.

In section 2, the datasets are described. Section 3

discusses the methods that were employed with em-

phasis on the identification of extreme precipitation

polygons (EPP) and assessment of the influence of the

inherent data inhomogeneities. Results, which are fo-

cused on the northeastern United States given the pro-

nounced trend in extreme rainfall frequency in this

region (Wuebbles et al. 2017), are outlined in section 4.

In addition, the analysis is extended to other regions of

the United States, albeit in less detail, for comparison.

Section 5 provides a summary and some concluding

thoughts.

2. Data

Four gridded daily precipitation datasets are ana-

lyzed. The attributes of these datasets are summarized

in Table 1 and briefly discussed in this section.

Inconsistencies in the spatial density and distribution of

station observations (e.g., Henn et al. 2018) and inherent

biases in estimates of precipitation (especially extreme

precipitation) from satellite-derived observations (e.g.,

Ombadi et al. 2018) present challenges in the use of

these data in trend analysis. Using multiple datasets,

derived using different methodologies and data sources,
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helps to illustrate the sensitivity of the results to data

inhomogeneities and grid resolution and provides justi-

fication for ultimately selecting two datasets that mini-

mize these biases.

a. NRCC interpolated station data

The Northeast Regional Climate Center (NRCC)

natural neighbor–interpolated station data (NRCCNN)

has the longest temporal coverage of the datasets, ex-

tending from 1950 to the present, and is available from

the Applied Climate Information System (ACIS;

DeGaetano et al. 2015). In NRCCNN, GHCN stations

(Menne et al. 2012) reporting a 0500–0900 local standard

time observation are interpolated to a 2.5-min grid

(approximately 4km3 4km) using the natural-neighbor

method. The preponderance of daily precipitation ob-

servations during this period follow a morning obser-

vation schedule, and therefore only this subset is used to

avoid mixing daily precipitation accumulations from

different time intervals. The total number of stations

used in the interpolation varies daily, depending upon

whether a given station reported (Fig. S1 in the online

supplemental material). Nonetheless, over the period

from 1950 to 2018, there has not been a systematic

change in the number of available stations (Fig. 1). Over

the 69-yr period, the number of available stations in the

Northeast varied between 550 and 750 with few excep-

tions. The dataset is national in scope and is updated

routinely to reflect the highest quality data in the GHCN.

b. PRISM

The Parameter–ElevationRegressions on Independent

Slope Model (PRISM; Daly et al. 2008) is also used to

define precipitation areas. Like NRCCNN, the base data

in the PRISM grid are obtained from theGHCN.Unlike

NRCCNN, topography is a key interpolation factor in

PRISM (Daly et al. 2008). Precipitation observations

are weighted based on topographic factors such as

coastal proximity, slope, elevation, and aspect. Stations

are grouped into facets and for each facet a regression

function between precipitation and the topographic

predictors is developed and then applied to a 30 arc s

digital elevation grid (Daly et al. 2008).

Climatologically aided interpolation (CAI) is applied

to the original surface station precipitation data used by

PRISM (Daly et al. 2017). CAI draws on the long-term

precipitation climatology to help define the spatial pat-

tern of precipitation on a given day (Hunter and

Meentemeyer 2005). PRISM assumes that the best-first

approximation of the spatial pattern of precipitation

for a given day is the pattern of long-term (1981–2010)

precipitation. The interpolated precipitation values are

subsequently smoothed based on an inverse distance

weighting of pixels within 8 km of the point of interest

(Daly et al. 2008). The final daily PRISM precipitation

grid has a resolution of 2.5min 3 2.5min, which is ap-

proximately 4 km 3 4 km over the Northeast (PRISM

Climate Group 2016).

After 2002, 4-km radar-based precipitation estimates

have been used as a part of the PRISM interpolation in

addition to station data (PRISM Climate Group 2016).

The inclusion of radar data, the addition of data from

networks other than the GHCN, and the lack of a con-

sistent observation time for input data introduce dis-

continuities to time series of extreme precipitation

events. For example, when ignoring observation time

TABLE 1. Summary of gridded datasets analyzed.

Dataset Period of record Resolution Primary data Reference

NRCCNN 1950–present 4 km GHCNDa —

L15 1950–2013 7 km GHCND Livneh et al. (2015)

PRISM 1981–present 4 km GHCND Daly et al. (2008)

PERSIANN 1983–present 25 km ISCCPb Ashouri et al. (2015)

a Global Historical Climatology Network Daily (Menne et al. 2012).
b International Satellite Cloud Climatology Project (Knapp 2008).

FIG. 1. Number of available GHCN precipitation stations to

compute the daily NRCCNN (solid line) grid that requires a

morning observation time and the PRISM (dotted line) grid that

does not restrict observation time.
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the number of available stations in GHCN increases

dramatically in the early 2000s (Fig. 1). This is in part

due to the inclusion of stations from the Community

CollaborativeRain,Hail andSnowNetwork (CoCoRaHS),

for which time-of-observation metadata are not in-

cluded in GHCN. The increased spatial detail afforded

by the radar data, results in an increase in the number of

unique extreme precipitation areas. This is particularly

the case for smaller (,1000km2) areas. Therefore, an-

alyses using PRISM were limited.

c. Livneh et al. data

The Livneh et al. (2013, 2015) dataset (hereinafter the

‘‘L15’’ dataset) is based on daily observing stations from

the NOAA Cooperative Observer Network included in

the GHCN. The data cover the period from 1950 to

2013. Precipitation data are interpolated to a 0.06258 grid
(approximately 7km in the Northeast) using the methods

of Shepard (1984) and Widmann and Bretherton (2000)

consistent with the method used by Maurer et al. (2002).

Here station-specific precipitation ratios (relative to

the 30-yr average) are interpolated to a grid using a

weighted average based on distance and directional-

ity (to avoid overweighting a cluster of stations rela-

tive to an isolated station located in a different

sector). Daily interpolated values are further scaled

to assure that the accumulation of daily precipita-

tion amounts match the long-term monthly average

PRISM climatology. This long-term PRISM climatol-

ogy is based on a consistent set of stations that are free

of the biases discussed previously. In the L15 method,

the recorded time of observation is used to apportion

daily precipitation totals to a common calendar day

prior to interpolation.

d. PERSIANN climate data record

The Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks Climate

Data Record (PERSIANN-CDR) is derived from

gridded satellite infrared data (GridSat-B1) and ad-

justed by the Global Precipitation Climatology Project

(GPCP) (Ashouri et al. 2015). International Satellite

Cloud Climatology Project (ISCCP) IR brightness

temperature data using infrared wavelengths between

10.0 and 12.0mm from geostationary satellite sources

serve as input to the PERSIANN algorithm (Ashouri

et al. 2015; Sorooshian et al. 2000). Using an artificial

neural network, the algorithm identifies cold cloud

pixels and associates variations in brightness temper-

ature to surface precipitation rate. The PERSIANN

algorithm is pretrained using Stage IV hourly precipi-

tation data (Ashouri et al. 2015). The data are pro-

cessed to a 25 km 3 25 km resolution.

PERSIANN data undergo bias correction using the

GPCP (Adler et al. 2003). The GPCP combines data

from 27 different sources, both precipitation data from

rain gauges and satellite-estimated precipitation data, to

get a blended precipitation dataset (Adler et al. 2003).

3. Methods

a. Computation of precipitation areas

For each gridded dataset, areas of precipitation ex-

ceeding a specified extreme daily precipitation total

were identified. A threshold of 5.08 cm was chosen on

the basis of its use to define extreme rainfall in foun-

dational papers describing trends (e.g., Easterling et al.

2000), to align with one of the core climate change in-

dices (ETCCDI 2013) and in the Northeast to corre-

spond to the one-in-5-yr-occurrence event analyzed

in recent studies (e.g., Kunkel et al. 2013a). A fixed

threshold amount is used, as opposed to one based on a

fixed percentile, to avoid subdividing areas of cohesive

precipitation amounts based on grid-to-grid differences

in climatological percentiles.

Given the daily resolution of the gridded datasets,

EPP do not necessarily represent the total precipitation

from a specific weather event but characterize the spa-

tial pattern of rainfall on a given calendar day. For each

daily precipitation grid, a five-step method was used to

define EPPs and compute each polygon’s area.

(i) The first step is to identify EPP. The matplotlib

software pyplot library contour function uses a

marching-squares approach to develop a set of

isolines corresponding to a specified extreme

precipitation value (e.g., 5.08 cm) given a two-

dimensional data array (in this case the daily

precipitation grid). A schematic visualization of the

marching-squares method is given online (https://

en.wikipedia.org/wiki/Marching_squares).

(ii) The second step is to extract line segments defining

polygons. The matplotlib software get_paths mod-

ule is used to find a set of closed line segments that

defines the extreme precipitation polygons associ-

ated with each day.

(iii) The third step is to convert line segments to convex

hulls. The scipy.spatial software ConvexHull class

uses the ‘‘quickhull’’ algorithm of Barber et al.

(1996). The resulting convex hulls facilitate the

computation of EPP area and are indistinguish-

able from the matplotlib contour paths obtained

in step i.

(iv) The fourth step is to modify convex hulls using the

matplotlib software path.contains_path() function and

the scipy.spatial.distance, pyproj software transform
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function. There are three situations in which the

polygons described by the convex hulls are modi-

fied (as illustrated in Fig. 2):

1) In situations where the endpoints of a polygon

bracket the corner of the domain boundary, a

vertex is added at the corner. Without such a

point, the convex hull often omitted the area in

the corner of the domain (Fig. 2).

2) It is also possible for two or more polygons to

be nested within each other, as in the lower-

right corner of Fig. 2. This occurs when there

are grid points with precipitation that is less

than the threshold within a more extensive

area of greater-than-threshold precipitation.

These interior polygons (enclosing the areas of

less-than-threshold precipitation) are identi-

fied using the path.contains_path() function

and ultimately excluded.

3) Given the spatial resolution of the gridded

precipitation data, it was also possible that the

contouring algorithm divided an otherwise

coherent area into multiple distinct polygons.

To avoid this, a minimum separation distance

threshold was implemented. Individual ex-

treme precipitation areas that were separated

by a distance of less than this threshold were

combined. Two distances (10 and 100 km)

were used to test the sensitivity of this pa-

rameter. The scipy.spatial.distance algorithm

was used to identify the closest convex hull

boundaries, and the pyproj library (https://

pypi.org/project/pyproj/) was used to convert

the map coordinates to geometric distance.

Since the choice of separation distance had

little effect on the results, only the 100-km

threshold is used.

(v) The fifth and final step is to compute EPP area,

using the pypi.org project software area function.

In this final step, the area enclosed by each modi-

fied polygon is converted from coordinate space to

geometric area.

b. Statistical analysis

Theil slopes were used to determine time-dependent

trends in both the number and area of the extreme

precipitation polygons. The significance of the identi-

fied slopes was quantified based on the Kendall’s tau

correlation coefficient test. Three classes of time series

were examined. First, to ascertain whether the gridded

datasets reflected the documented trends in extreme

precipitation using the station record, grid points cor-

responding to GHCN station locations were selected.

Stations were limited to those with ,10% of the po-

tentially available daily observations missing during

the 1950–2018 time period. A total of 356 stations met

this criterion (online supplemental Fig. S1). For both

the closest grid point and the station itself, the annual

and seasonal number of occurrences exceeding the

extreme threshold were tallied. Then the numbers of

occurrences in a given year were summed across all

stations in a region and divided by the number of sta-

tions to get an annual mean value.

The gridded data were also randomly sampled to as-

sess whether the gridpoint trends were an artifact of the

location of the stations. In each of 1000 replications,

356 grid points were randomly selected, a regional av-

erage computed, and trends calculated. The resulting

trends were then compared with those representing the

station locations.

The other two classes of time series were based on the

set of extreme precipitation polygons. First, the total

number of unique extreme precipitation polygons, re-

gardless of size, was tallied for each year and season and

the associated trends assessed. Then polygon area was

considered by developing annual and seasonal series

of regional 10th-, 25th-, 50th-, and 75th-percentile and

maximum polygon area.

4. Results

Three broad categories of results are discussed. In

section 4a, the ability of the gridded datasets to replicate

the station-based trends documented in previous studies

is evaluated. Select gridpoint values are used to simulate

station data and comparisons among the datasets con-

ducted based on this metric. In sections 4b and 4c,

FIG. 2. Illustration of cases that required modification of the

specified convex hulls. Contours depict extreme precipitation

contours.
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time-dependent trends in EPP counts and areas are

presented and inconsistencies related to the PRISM

and PERSIANN datasets are discussed. In sections 4d–

4f, EPP trends based on the NRCCNN and L15 datasets

are assessed from a seasonal prospective and with re-

gard to the sensitivity of the choice of extreme pre-

cipitation amount threshold. The Northeast-specific

results are also compared with the other National

Climate Assessment (NCA) regions within the conti-

nental United States.

a. Single grid point

The average regional number of 5.08-cm daily pre-

cipitation events is similar in the station, NRCCNN, and

PRISM datasets. Over the common 1981–2013 period,

averaged across the Northeast, station counts are

slightly higher than the average annual counts associ-

ated with the PRISM and NRCCNN gridpoint values

(Table 2). The annual counts are lower using the L15

dataset (Table 2) with even fewer counts based on the

PERSIANN grid. The interannual variance also varies

with dataset. The higher spatial resolutionNRCCNN and

PRISM data exhibit standard deviations that are in line

with the station data (Table 2). Lower variance occurs in

the coarser-resolution data grids. Although resolution is

one of the differentiating features of the datasets, it is

not the only factor that leads to these differences.

Timmermans et al. (2019) point to source data as a

primary segregation mechanism and demonstrate that

satellite-based products tend to show smoother spatial

features, especially PERSIANN.

Despite these differences, except for PERSIANN,

the trends in the occurrence of one-day 5.08-cm precipi-

tation events were similar among the datasets (Fig. 3).

Regardless of the period of record or dataset, the trends

were consistently positive and statistically significant at

the two-tailed 95% level. Over the period from 1950 to

2013, 5.08-cm precipitation occurrences increased by

34%–43% (0.003–0.009 events per year) depending on

dataset. The station observations and L15 values had the

TABLE 2. Periods of record, means, and standard deviations of

annual 5.08-cm daily precipitation counts based on station obser-

vations and four gridded datasets.

Grid name Period of record Mean Std dev

Station 1981–2013 1.47 0.46

NRCCNN 1981–2013 1.20 0.46

PRISM 1981–2013 1.28 0.32

L15 1981–2013 0.48 0.29

PERSIANN 1983–2018 0.39 0.25

FIG. 3. Time series of average annual counts of point precipitation exceeding 5.08 cm in the

Northeast for (a) station locations and (b) NRCCNN, (c) L15, (d) PRISM, and (e) PERSIANN

grid points corresponding to station locations. Theil slopes corresponding to each dataset’s

period of record are shown by dashed lines. In (a)–(c), the second dashed line depicts the slope

over a period of record that is in common with that of the PERSIANN data.

556 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59



greatest percent increase (43% and 42%, respectively) in

this period. These results are unaffected when a higher

missing data threshold (20% vs 10%) was implemented.

For the shorter 1981–2013 period, the trends in the

station, NRCCNN and L15 datasets (Figs. 3a–c) were

again similar and the rate of change tended to be greater

(0.009–0.018 events per year or between 1.2%yr21 and

1.7%yr21). The PRISM (Fig. 3d) values also increase

at a similar rate (0.021 event per year; 1.6%yr21). These

rates of change are also generally consistent (despite

differences in period of record and definition of extreme

threshold) with those reported in the literature for sta-

tion observations. For instance, in the Northeast,

Hoerling et al. (2016) show a 6%–8% per decade in-

crease in the frequency of very wet days from 1979 to

2013, with much of the increase coming inMay–October.

The PERSIANN grid values behaved differently

(Fig. 3e). Over its 1983–2018 period of record, 5.08-cm

precipitation events declined at a statistically significant

rate of 20.006 events per year (21.4%yr21) averaged

over the 356 grid points closest to the station locations.

While it is not clear why PERSIANN exhibits this dis-

tinctive behavior, there is a propensity for satellite-

based products to underestimate heavy precipitation

(Ombadi et al. 2018).

Using the NRCCNN data grid, the frequency of slopes

obtained from 1000 randomly sampled sets of 356 grid

points is shown in Fig. 4. The slopes are largely consis-

tent with those based on grids approximating the station

locations. For the grid networks of random locations, the

slopes tend to be greater than that for the network

representing the station locations, but less than that of

the station data. Thus, the majority of random-location

slopes fall between NRCCNN and station observation

slopes shown in Fig. 3. The slopes in all but six of the

FIG. 4. Histogram of extreme precipitation event time series

slopes from 1000 randomly selected 356-gridpoint networks from

theNortheast. The vertical lines correspond to the time series slope

identified for the station data (dashed) and the network of

NRCCNN grid points associated with the stations (dotted) and the

mean of the random NRCCNN gridpoint slopes (dot–dashed).

FIG. 5. Average annual number of 5.08-cm EPP polygons derived from (a) NRCCNN,

(b) L15, (c) PRISM, and (d) PERSIANN data. The dotted lines show the Theil slope for the

period 1950–2013 or 1983–2013.
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randomly selected networks of 356 grid points were

significant at the a 5 0.05 level.

b. Number of areas

The increasing frequency of 5.08 cm precipitation

events at station or individual gridpoint locations can

arise from two features of the spatial distribution of

extreme precipitation. Either the number of EPP can

increase, or the area enclosed by EPPs can increase;

both of these spatial features are intrinsically linked to

changes in the intensity and/or duration of precipitation.

Figure 5 shows that the number of EPP has remained

constant across the Northeast, particularly since 1950 in

two of the datasets. Using the L15 dataset (Fig. 5b) a

gentle positive slope (0.2 EPP per year or approximately

0.2% per year) is observed in both the 1950–2013 (p 5
0.25) and 1983–2013 (p5 0.75) periods. This is similar to

the behavior of the NRCCNN time series in the 1950–

2013 period, that shows an even less significant positive

slope (Fig. 5a). The NRCCNN time series exhibits a

significant increase in EPP counts in the 1983–2013

period, but this is likely an artifact of the choice of end

years. For the 1983–2018 period, the NRCCNN slope

becomes nonsignificant. The PRISM data show an

abrupt increase in the number of EPP after 2002

(Fig. 5c). Since this stemmed from systematic temporal

discontinuities related to the inclusion of radar data

and a sharp increase in available GHCN stations

(Fig. 1), the PRISM data were excluded from further

analysis.

The coarser-resolution PERSIANN dataset, exhibits a

different time-dependent behavior, with EPP counts

declining at a significant rate of 0.5 EPP per year in both

FIG. 6. Cumulative distribution functions of Northeast EPP areas

(axes reversed to account for the difference in EPP areas between

datasets) for NRCCNN (black), L15 (blue), and PERSIANN (red).

PERSIANN areas are shown on the secondary y axis on the right.

The inset shows the portions of the cumulative distribution func-

tions that correspond to the 90th percentile–maximum area.

FIG. 7. Median annual total area encompassed by 5.08-cm EPP polygons derived from

(a) NRCCNN, (b) L15, and (c) PERSIANN data and (d) L15 (green) and NRCCNN (blue)

regridded to the coarser PERSIANN resolution. The dotted lines show the Theil slope for the

periods 1950–2013 or 1983–2013. The p value for the longest time period is indicated.
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the 1983–2013 (p 5 0.03) and 1983–2018 (p 5 0.01)

periods (Fig. 5d). The PERSIANN data also exhibited a

trend that was opposite to those for daily 5.08-cm ex-

treme precipitation occurrence in the station, NRCCNN,

L15, and PRISM data (Fig. 3).

c. Size of areas

The empirical probability distribution of areas enclosed

by the EPPs is highly right skewed. On the basis of the

cumulative distribution function shown in Fig. 6, the

lowest 50% of the NRCCNN and L15 EPP areas

encompass a similar range of values from 16 to 300 km2.

For larger EPPs, the 75th-percentile areas are 30% larger

in the NRCCNN data (1350 vs 1000km2). At the 90th

percentile, the NRCCNNEPP area is 60% larger than the

L15 value (6777 vs 4031km2). The maximum EPP areas

are two orders of magnitude larger than the 90th per-

centile, but the areas aremore similar among the datasets,

varying by 16% (3.7 3 105 vs 3.2 3 105km2).

PERSIANN EPP areas are consistently larger than

those for NRCCNN and L15. Both the median and

90th-percentile areas are 4–7 times as large as that given

by the NRCCNN and L15 values. Despite this, the most

extreme PERSIANN EPP area (3.6 3 105 km2) is simi-

lar to that given by the other grids. This is an indication

that coarser PERSIANN grids are able to characterize

regional-scale extreme precipitation events as well as

the finer-resolution grids but overly smooth smaller-

scale extreme precipitation areas. For perspective, an

area of 3.63 105km2would coverNewYork, Pennsylvania,

New Jersey, and the three southern New England

states. An example of an event with this spatial scale

occurred on 1 October 2010 when an upper-level low

pressure system interacted with moisture from Tropical

Storm Nicole.

The median EPP areas have significantly increased

through time on the basis of both the NRCCNN (Fig. 7a)

and L15 (Fig. 7b) data. The trends are consistent over

the 1950–2013 period, which is common to both datasets.

The median EPP area has increased by 2.8 km2 yr21

in the NRCCNN data and 2.1 km2 yr21 in L15. For a

more recent period, 1983–2013, chosen because of its

overlap with the PERSIANN data record, the NRCCNN

slope is similar (2.3 km2 yr21) while the L15 slope is

steeper (4.2 km2 yr21). This larger slope is partially an

artifact of 1983 corresponding to the minimum of the

L15 time series as the slope for the 1984–2013 and 1985–

2013 periods is less (3.4 km2 yr21).

The PERSIANNdata series does not exhibit the same

time-dependent behavior (Fig. 7c). Instead EPP de-

creases, but at a rate that is not statistically significant.

To examine whether the coarser resolution of the

PERSIANNprecipitationwas responsible for this difference,

the L15 and NRCCNN datasets were upscaled to the

PERSIANN resolution using the bilinear interpola-

tion function from the matplotlib basemap toolkit (https://

matplotlib.org/basemap/api/basemap_api.html). Although

the trend in median EPP area from the coarsened L15

data remained positive (Fig. 7d), the trend’s signifi-

cance fell from p5 0.01 at the original resolution to p5
0.09. The NRCCNN trend also changed, reversing from

significantly positive to negative (Fig. 7d). Timmermans

et al. (2019) urge caution in the use of gridded satellite

precipitation in extreme analyses because of difficulties

resolving precipitation over complex terrain, generally

coarser resolution than rain gauge–based interpolations,

and the nondirect measurement of precipitation from

radiation measurements. Likewise, Nguyen et al. (2018)

document that PERSIANN underestimates extreme

rainfall in the continental United States. Thus, sub-

sequent analyses are based only on the NRCCNN and

L15 data.

d. Seasonal trends

From a seasonal perspective, Table 3 shows that

trends in Northeast EPP median area are significant

and greatest in during spring and summer. Neither the

NRCCNN nor L15 dataset indicates a significant trend

in autumn EPP median area. Consistent with the an-

nual results, trends in seasonal EPP counts are gen-

erally not significant and in some cases decreasing

(annual EPP counts decline slightly with time in the

NRCCNN data). At point locations corresponding to

station locations, both gridded datasets show signifi-

cant positive trends in extreme precipitation counts

during spring and nonsignificant positive trends during

fall, in agreement with the station data. Trends are also

TABLE 3. Theil slopesa associated with seasonal changes in

5.08-cm precipitation occurrence at single points (events per

year), EPP counts (polygons per year), and annual median EPP

area (km2 yr21). Significant (p , 0.05) slopes are shown in

boldface type.

Dataset Winter Spring Summer Autumn

Single point

Station 0.002 0.003 0.003 0.003

NRCCNN 0.001 0.002 0.001 0.002

L15 0.000 0.001 0.001 0.001

EPP count

NRCCNN 0.000 0.066 20.362 20.037

L15 0.000 0.167 20.035 20.551

EPP area

NRCCNN 2.58 4.66 2.61 1.77

L15 0.33 2.58 2.07 0.93

a Slopes are computed on the basis of the 1950–2018 period of re-

cord, except for L15, which ends in 2013.
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positive based on each of the three datasets in summer

and winter, but only the station trends are statistically

significant.

e. Sensitivity to percentile and precipitation
thresholds

Trends in Northeast EPP area percentiles other

than the median are consistent (Fig. 8). In all cases the

trend in the annual 10th-, 25th-, and 75th-percentile

area (Figs. 8a–f) is positive and statistically significant

(p , 0.03). There is not a consistent relationship be-

tween slope and percentile. Like the median, the

trends in the 1950–2013 period are similar to those

computed over the 1983–2013 period. In the L15 data,

however, there is a tendency for the slope to be

greater in the shorter (more recent) time period. The

maximum annual EPP area also increased in both

datasets (Figs. 8g,h). Only the maximum annual EPP

area trend for the L15 data did not attain significance

at the a 5 0.05 level (p 5 0.062).

Northeast annual median EPP area trends defined

using other extreme thresholds (2.54, 7.62, and 10.16 cm)

also matched those based on the 5.08-cm threshold

(Fig. 9). In all cases the trends are positive and, with the

exception of the 10.16-cm threshold, are statistically

significant. The trends for the 1983–2013 period also

tend to be greater than those for the full record, as was

the case with the 5.08-cm threshold. It is possible for the

EPP median area for a higher precipitation threshold to

exceed that based on a lower threshold. The distribution

of areas based on lower thresholds are heavily right

skewed as opposed to more uniform as is the case with

higher thresholds.

f. Other regional trends

The significant median annual EPP area trends iden-

tified in the Northeast region, are not characteristic of

other regions in the United States (Fig. 10). The L15

dataset is used given its similarity to the NRCCNN re-

sults in the Northeast and its consideration of the

FIG. 8. Annual (left) NRCCNN and (right) L15 (a),(b) 10th-, (c),(d) 25th-, (e),(f) 75th-percentile, and (g),(h) maximum area encom-

passed by 5.08-cm EPP polygons. The dotted lines show the Theil slope for the period 1950–2013 or 1983–2013. The p value for the 1950–

2013 period is also indicated.
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elevation gradients and sparser station density in

more western regions. In adjacent regions, a statisti-

cally significant increase in median 5.08-cm EPP area

occurs in the Southeast NCA region (Fig. 10a), but to

the west in the Midwest NCA region, the increasing

trend in EPP area is not significant (Fig. 10b). Trends

in 2.58-cm EPP area are either nonsignificant or

decreasing.

In the western United States, median annual EPP

trends are significantly negative in both the Northwest

and Southwest NCA regions, regardless of precipita-

tion threshold. In the central part of the United States,

the large Great Plains NCA region was divided into

northern and southern subregions, with the southern

Great Plains encompassing Kansas, Oklahoma, and

Texas. In both subregions median annual EPP area

decreases through time, with only that using the 2.54-cm

threshold in northern Great Plains attaining statistical

significance.

In all NCA regions outside the Northeast, EPP counts

decrease with time (not shown). Significant decreases

are noted in the Northwest, Southwest, and northern

Great Plains regions. These areas showed the largest

declines in EPP area.

5. Summary and conclusions

The significant increase in extreme daily precipitation

occurrence at station locations in the northeastern

United States that has been documented in previous

studies appears to correspond to an increase in the

spatial area that receives extreme precipitation on a

given day. Using two datasets that interpolate station

observations to a high-resolution (,10 km) grid and

minimize temporal data inconsistencies, the following

was found:

1) Trends in station-based extreme precipitation oc-

currence are replicated by grid points representing

the station locations as well as random selections of

n grid points, where n is the number of available

stations.

2) There has been no significant or consistent change in

the number of EPPs (individual polygons defined

FIG. 9. Median annual total area encompassed by (a) 2.54-, (b) 5.08-, (c) 7.62-, and (d) 10.16-cm EPP polygons

derived from NRCCNN (blue) and L15 (black). Also shown is the Theil slope for the period 1950–2013 (dashed

lines) or 1983–2013 (dotted lines). The p values for the longest time period is indicated.
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by a specific extreme isohyet) that occur each year

across the Northeast.

3) The annual median area of EPP has increased sig-

nificantly at a rate of between 2 and 3km2yr21 over

the period from 1950 to 2013. This represents about a

doubling of the annual median EPP areas common

in 1950.

4) Similar increases are found in EPP areas correspond-

ing to percentiles other than the median and extreme

precipitation thresholds other than 5.08 cm.

5) On a seasonal basis, the increase in EPP area is most

pronounced in the spring and summer. TheNRCCNN

grid also indicates a significant increase in EPP area

in winter.

6) In regions outside the Northeast, where trends in

station-based extreme precipitation are not as strong,

trends in EPP area are generally not significant or

decreasing. The Southeast, which saw a significant

increase, is an exception.

Collectively, these findings suggest that the increases

in station-based precipitation extremes reported in the

literature for the Northeast result from a general ex-

pansion of the geographic area affected by extreme

precipitation, rather than an increase in the number of

EPP. This increase in geographic coverage occurs re-

gardless of EPP size, as similar trends are detected

across the EPP area distribution, and also regardless of

the threshold used to define extreme. However, the

change is tempered for the largest EPP (e.g., the annual

maximum EPP area) and the most extreme thresholds

(e.g., $10.16 cm). Such a finding is consistent with a

general moistening of the atmosphere (e.g., Trenberth

et al. 2018), in which, for example, a uniform increase in

precipitation amounts across the precipitation shield

would lead to a larger area of rainfall above a fixed

threshold.

While the results are consistent with the many studies

that have documented changes in the frequency and

intensity of extreme rainfall at observing stations, they

conceptually differ from those that have examined ex-

treme rainfall at the individual storm scale. BothWasko

et al. (2016) and Chang et al. (2016) found a contraction

of the area of most intense precipitation within a given

storm. In model simulations, Dwyer and O’Gorman

(2017) found that stronger winds increase storm speed

and hence shorten the time period that any particular

FIG. 10. Median annual total area encompassed by 5.08- (black) and 2.54-cm (blue) EPP polygons derived from

L15 for the (a) Southeast, (b) Midwest, (c) Northwest, (d) Southwest, (e) northern Great Plains, and (f) southern

Great Plains NCA regions. The dotted lines show the Theil slope for the period 1950–2013. The p value for each

dataset’s slope is also given.
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location receives extreme rainfall. Examining how this

translates to daily EPP area would provide a physical

causal mechanism to our empirical results. Conceivably,

faster-moving storms could spread extreme rainfall

over a broader area, despite limiting rainfall at a specific

point. As Dwyer and O’Gorman (2017) point out,

changes in the size of the eddies that encompass the

extreme precipitation could also impact EPP area.

In addition to providing new insight into a potential

underlying mechanism for the increased extreme pre-

cipitation occurrence at Northeast stations, particu-

larly vis-à-vis other regions of the United States that

have experienced smaller increases in extreme pre-

cipitation, the results also have practical implications.

For instance, a systematic change in the spatial extent

of extreme precipitation would affect existing empirical

relationships relating point precipitation observations to

areal precipitation amounts (e.g., Le et al. 2018).

The increases are consistent between two different

gridded datasets. Although both depend on the GHCN

station observations, they differ in the subset of GHCN

stations that is used and the method of spatial interpo-

lation. In one case, daily precipitation is a simple natural

neighbor interpolation among the station values, while

in the other, a greater number of stations is used and the

interpolations scaled to match the long-term PRISM

climatology, which accounts for topographic and coastal

influences (Livneh et al. 2013, 2015). Because both of

these datasets also have a.60 year period of record, the

influence of decadal variability on the trends is reduced.

Although beyond the scope of this work, examining

areal extreme precipitation extent as a function of dif-

ferent modes of large-scale climate variability is an in-

teresting avenue for future research.

Examination of EPP area trends using two additional

datasets with shorter periods of record highlight how

differences in base data sources and grid resolution af-

fect the resultant trends. In the case of PRISM, the in-

corporation of radar-estimated precipitation during the

early 2000s greatly increased the number of EPP poly-

gons. This created an artificial discontinuity in the EPP

area time series as many more small areas were identi-

fied in the radar era. Conversely, the EPP area trend

based on the coarser-resolution PERSIANN data grid

was not significant and negative. Although Timmermans

et al. (2019) and Chen et al. (2014) cite other causes, this

difference appears to have been at least partially due to

the base resolution of the PERSIANN grid. When

the L15 and NRCCNN grids were upscaled to the

PERSIANN resolution (a single 0.258 PERSIANN

grid cell encompasses approximately 9 L15 and 36

NRCCNN grids), none of the annual percentile areas

showed a significant increase with time (Fig. S2 in the

online supplemental material). This is despite the

presence of significant trends in 10th-, 25th-, 50th-, and

75th-percentile EPP area as based on the original-

resolution L15 and NRCCNN grids. For maximum

area, the trends in the upscaled values were more

similar to those using the original L15 and NRCCNN

grid resolution. This is not unexpected given the

largest annual EPP polygon areas are similar among

the datasets. These differences highlight the need for

long-term gridded precipitation datasets that are free

of methodological and base data discontinuities. Future

datasets that employ the PRISM (or similar) radar-based

interpolations over a longer recordwill be instrumental in

subsequent evaluations of temporal EPP area changes.
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