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Abstract—While cloud-resolving models can explicitly
simulate the details of small-scale storm formation and
morphology, these details are often ignored by climate
models for lack of computational resources. Here, we
explore the potential of generative modeling to cheaply
recreate small-scale storms by designing and implement-
ing a Variational Autoencoder (VAE) that performs
structural replication, dimensionality reduction, and clus-
tering of high-resolution vertical velocity fields. Trained
on ∼ 6 · 106 samples spanning the globe, the VAE
successfully reconstructs the spatial structure of con-
vection, performs unsupervised clustering of convective
organization regimes, and identifies anomalous storm
activity, confirming the potential of generative modeling
to power stochastic parameterizations of convection in
climate models.

I. MOTIVATION

Boxed in by computational limits, many of the details
of our atmosphere remain too minute to explicitly resolve
in climate models [1], [2], [3]. Key physics driving
convection and cloud formation occur on the scale of
meters to a few kilometers, while typical modern climate
models have a resolution of 100−200km2 horizontally -
meaning important sub-grid processes are parameterized.
Computational capabilities are advancing, and climate
models are increasingly common, in particular those with
three-dimensional explicit resolution of clouds systems.
However, the capability to run these models for the
∼100-year timescales needed is often impractical [4],
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[5], [6] and the information content they generate about
the details of cloud and storm organization are frequently
overwhelming to analyze at its native scale. This has
left significant gaps in knowledge about many of the
details of cloud-climate feedbacks and the relationship
between storm organization and its thermodynamic
environment [1], [6]. However, deep learning, and in
particular generative models, may provide a path to a
better understanding of these phenomena and their role
driving the weather and climate of our world.

The application of machine learning in the physical
sciences has increased exponentially in recent years
but with important avenues still largely unexplored.
In climate modeling, deep neural networks have been
re-purposed to emulate the large-scale consequences
of storm-level heating and moistening over the atmo-
spheric column to replicate mean climate and expected
precipitation patterns and extremes [7], [8], [6], [9],
[10]. However, much of this work has been confined to
deterministic neural networks that ignore the interesting
stochastic details of eddy and storm organization. The
recent application of Generative Adversarial Networks
(GANs, [11]) to the Lorenz ’96 Model suggests a
potential, under-explored role for generative models in
atmospheric sciences – particularly towards stochastic
parameterizations [12], [13]. There have also been initial
successes using various types of GAN architectures
to generate plausible Rayleigh-Bernard convection. In
particular, adding informed physical constraints to GAN
loss functions seem to improve the generation of
these non-linear fluid flow systems [14], [15], [16],
[17]. While promising, such techniques have thus far
been restricted to idealized turbulent flows of reduced
dimension and complexity; there is ample room to
explore generative modeling methods for representing
convective details amidst settings of realistic geographic
complexity. Meanwhile, generative modeling besides
GANs have not been as thoroughly considered for
turbulent flow emulation and could potentially power
climate models down the line.

VAEs may prove more appropriate than GANs for
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these climate applications given their design containing
both a generative and representational model, their often
superior log-likelihoods and reconstruction simulations,
and practical advantages including stabler training
results, easier performance benchmarking, and more
interpretable latent manifold representations [18], [19],
[20]. Modified VAEs can reconstruct plausible two-
dimensional laminar flow with computational efficiency
beyond what is common when numerically solving linear
differential equations [21]. There has been preliminary
work using VAEs for the clustering of atmospheric
dynamics – a gain again relying on simplified Lorenz
’96 model data as well as potential vorticity fields
and geopotential heights [22], [23]. This application of
representation learning across a variety of simplified sim-
ulations suggests VAEs offer great potential as both an
engineering tool to help escape computational limits on
the generative side and may provide the ability to learn
and extract hidden organizational details in atmospheric
dynamics on the representation side. However, to the
best of our knowledge, this is the first study to use a VAE
for representational learning on the details of convective
organization and associated gravity wave radiation1 as
revealed by spatial snapshots of vertical velocity – an
inherently chaotic and bimodal variable [24] – across
a dataset large enough to nonetheless encompass the
spatiotemporal diversity of turbulence regimes in the
atmosphere. As far as we know, this is also the first
study to constrain a VAE’s output statistics by adding
a covariance constraint term to its loss function to
improve representation and capture variance details
at small spatial scales in the turbulent atmospheric
boundary layer, which can be considered one of the
most difficult locations for climate models. Our results
demonstrate the power of VAEs to accurately reconstruct
high-resolution climate data, as well as their ability
to leverage dimensionality reduction for high level
feature learning and anomaly detection. This casts VAEs
as promising tools for both dynamical analysis and
stochastic parameterization of fine-scale atmospheric
processes from cloud-resolving data.

II. METHOD

In this Section, we discuss the architecture of the
three machine-learning models used here, the design
of our covariance constrained VAE loss function, and

1Here we are referring to internal gravity waves, which are
horizontally-propagating disturbances in the atmosphere generated
by density perturbations, e.g. from deep convection, frontogenesis,
or topography.

Layer Filters Kernel Stride Activation

2D Conv 64 3x3 2 relu
2D Conv 128 3x3 2 relu
2D Conv 512 3x3 2 relu
2D Conv (µ) 64 3x3 2 relu
2D Conv (σ) 64 3x3 2 relu

TABLE I: Our Encoder architecture. Conv refers to a
convolutional hidden layer. The first hidden Conv layer
receives an input vector of 32x128 (30x128 expanded
by padding) representing a vertical velocity snapshot.

Layer Filters Kernel Stride Activation

2D Conv-T 1024 3x3 2 relu
2D Conv-T 256 3x3 2 relu
2D Conv-T 64 3x3 2 relu
2D Conv (µ) 1 3x3 2 sigmoid
2D Conv (σ) 1 3x3 2 linear

TABLE II: Our Decoder architecture. Conv-T refers to
a transposed convolutional hidden layer.

the generation and preprocessing of the atmospheric
simulation data.

A. Architecture

Our VAE takes vertical velocity fields formatted as
(30×128) 2D images. We adopt a fully convolutional
design2 to preserve local information, which is essential
in atmospheric convection modeling (Tables I and II).
We obtain meaningful reconstruction performance by
ensuring that the information bottleneck in the VAE is
not too severe, i.e. that the latent space is still wide
enough to preserve enough fine features of the vertical
velocity fields (in our case of dimension 1024), and
by implementing annealing techniques outlined in [26],
[27]. Here, we analyze two successful VAEs: One with
a traditional negative ELBO in the loss, and one with
an additional covariance constraint in the loss. As a
baseline, we also implemented a regular autoencoder
of the same design as above, with two key differences:
All activations were replaced with the identity function
and our covariance constrained loss was replaced with
the mean-squared error. We refer to this model as the
“linear” model, and use it to better quantify the added
value of VAEs for modeling atmospheric convection.

2Earlier experiments used architecture similar to models used for
CIFAR-10 data [25] with fully connected dense layers separating the
encoder and the decoder from the latent space, but led to discouraging
reconstructions plagued by posterior collapse and an inability to
represent the spatial patterns of convection.
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B. VAE Loss Implementation

The total loss is the sum of two terms: the negative
of the Evidence Lower Bound (ELBO), commonly used
as the total VAE loss, and a covariance constraint loss
term [21], [16], [28] on the covariance matrix that we
weigh by λ ∈ R+:

Loss
def
= −ELBO + λ× CC, (1)

where CC is a “covariance constraining” term using
the Frobenius norm ||·|| to measure the distance between
the covariance, Σ, of the likelihood pθ(x|z) and the
covariance, Σ, of the true data distribution p(x). θ refers
to model parameters and x refers to observed vertical
velocity fields:

CC = ||Σ(pθ(x|z))− Σ(p(x))||. (2)

Unconstrained VAEs (λ = 0), henceforth referred to
as “VAE” for short, maximize the ELBO, defined as
the sum of the log-likelihood pθ(x|z), and the Kullback-
Leibler (KL) Divergence between p(z) and qφ(z|x):

ELBO(x; θ, φ, z) = Eqφ(z|x)[log pθ(x|z)]

−DKL(qφ(z|x) || p(z)),
(3)

where φ are our variational parameters which are
learned jointly with the model parameters, θ. p(z) refers
to the prior and qφ(z|x) refers to the estimated posterior.
We denote hidden variables as z. Minimizing the KL
loss term regularizes the variational parameters in the
model and makes the VAE posterior more similar to the
VAE prior. Maximizing the log-likelihood enables the
VAE to produce realistic vertical velocity fields where
the output will be more closely aligned with the latent
variable of the model. Following [29], we assume that
the prior over the parameters and the hidden variables
are both centered isotropic Gaussian and calculate ELBO
using equation (24) of [29].

To control the rate-distortion trade-off [27], we imple-
ment linear annealing to the KL loss term following [30],
where the KL term is multiplied by an annealing factor
linearly scaled from 0 to 1 over the course of training. In
our VAE, linear annealing results in significantly lower
KL losses and more interpretable latent spaces.

Finally, to generate vertical velocity fields with
realistic spatial variability, we additionally implement
covariance-constrained VAEs. Following Equation 2,
the covariance constraint is defined as the Frobenius
norm of the covariance matrix error, which we estimate
over each batch during optimization. We choose a pre-
factor λ = 106 so that the magnitude of the covariance

constraint matches that of the reconstruction loss, result-
ing in a covariance-constrained VAE “CC-VAE” that
generates more faithful covariance matrices.

C. Data & Preprocessing

1) Cloud-Resolving Data: To train and test our VAE,
we rely on snapshots of vertical motions with explicitly-
resolved moist convection and gravity wave radiation
obtained from ∼15k instances of a Cloud-Resolving
Model (CRM) [31], [32] embedded within a host Global
Climate Model (GCM). The CRMs operates at a 20s
native timestep data and we extract state snapshots
from it every 15 minutes, the frequency with which its
horizontal average state is permitted to interact with its
host GCM. We perform a 100-day multi-scale climate
simulation to generate data showing details of atmo-
spheric convection within a tropical belt from 20N to 20S
latitudes. Specifically, at each 1.9◦×2.5◦ horizontal grid
cell of the Super-Parameterized Community Atmosphere
Model (SPCAM5), we embed a 128-column System
for Atmospheric Modeling (SAM) micro model with
kilometer scale horizontal resolution; both the host and
embedded models use 30 vertical levels. This entire
dataset comes to a size of 1.3 Tb. For our purposes,
there is 30 level by 128 CRM-column "snapshot" or
"image" of a convective-scale vertical velocity field at
each latitude-longitude grid cell that we feed into the
encoder of our neural network. We train our VAEs
on sub-samples of this data staged on UC Irvine’s
GreenPlanet Super-computing node and our machine
learning simulations are powered by two NVIDIA Tesla
V100 and one NVIDIA Tesla T4 GPUs.

2) Preprocessing: To reduce data volume for efficient
training and to ensure our VAE is exposed to a plethora
of convective motion, we selectively sample from
the initial 1.3Tb SAM dataset. We restrict our initial
data volume to the 144 latitude/longitude coordinates
with a detectable diurnal cycle of precipitation where
amplitude of daily precipitation is greater than two
times its standard deviation within the larger-scale host
model. This precipitation filtering ensures samples of
strong convection get placed into the training dataset,
as a persistent diurnal cycle of precipitation often
indicates deep convection and the presence of mesoscale
convective systems [33]. Within these selected grid cells,
the vertical velocity values range from 37.3m s−1 to
−17.4m s−1 and are then scaled from 0-1 by subtracting
the minimum and dividing by the range.

We shuffle data in the spatial and temporal dimensions
prior to training. We use An 80%/20% training/test split
for all models. To ensure a balanced dataset of different
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convective types, we apply K-means clustering with
two centroids to group data with active and inactive
vertical velocity fields. We then sample equally from
both clusters without replacement to design a balanced
dataset for the VAE. This new 4.3Gb dataset has a
111206/27802 training/test split. Since the horizontal
domain is doubly-periodic, two vertical velocity updrafts
of equal magnitudes and size located at different
horizontal locations are physically identical. To prevent
the VAE from treating them as different at the expense
of reconstruction magnitude and variance, we preprocess
all samples so that the center of the vertical velocity
field is the location of strongest convection present in
the sample. We define the “strongest convection” as
the largest absolute value of spatially-averaged vertical
velocity, from 400hPa to 600hPa in the vertical and
using a moving average of 10km horizontally.

D. Quantifying Reconstruction Performance

We quantify the reconstructions of our final VAE
and CC VAE as well as our linear baseline using the
following metrics:

1) Hellinger Distance: We calculate the Hellinger
distance H between the discrete distributions to gauge
similarity [34]:

H(p, q) =

√√√√ k∑
i=1

(
√
pi −

√
qi)2

2
(4)

where p is the distribution of the original vertical ve-
locity fields and q is the distribution of the corresponding
reconstruction.

2) Mean Squared Error (MSE): To provide an overall
skill of the reconstruction, the MSE is calculated
between each original sample and its corresponding
reconstruction.

3) Spectral Analysis: To better understand the skill
of the VAE reconstruction from a spatial perspective,
we perform one-dimensional spectral analysis on each
sample and reconstruction at all 30 levels in the vertical
dimension. We examine four vertical levels commonly
used in meteorology: 850hPa (top of the boundary layer),
700hPa (lower troposphere), 500hPa (mid-troposphere),
and 250hPa (upper-troposphere) to see how our VAEs
capture the spatially-resolved vertical velocity variance
throughout the atmosphere. We calculate the power
spectral density Φk using:

Φk
def
=

∆n

N

∣∣∣∣∣∣
N−1∑
j=0

yje
−ijk
NT

∣∣∣∣∣∣
2

(5)

Model MSE Hellinger Distance Frobenius Norm

Linear 4.2e-6 2.0e-3 8.0e-3
VAE 1.1e-5 3.1e-4 3.2e-4
CC VAE 4.5e-6 2.0e-3 8.0e-6

TABLE III: Quantitative Reconstruction Metrics. We
compute the MSE and Hellinger Distance between true
and predicted reconstructions. This shows the baseline
is equally good at predicting the mean reconstruction.
We also compute the Frobenius Norm of the error in
the covariance matrices of the true data and the recon-
structions. Both VAEs capture more of the covariance
structure of the data than the linear baseline.

where N is the length of the x dimension, yj is
the sample or reconstruction, T is 1/length, i is the
imaginary unit and k is the vertical level of interest in
hPa (850, 700, 500, or 250) [35].

III. RESULT & DISCUSSION

Our VAE trained on cloud-resolving climate data
produces accurate vertical velocity field reconstructions.
When we provide the high resolution training dataset
and appropriate convolutional architecture, our VAE
learns remarkably accurate representations of any type
of convection found within the test dataset. Our VAE
captures the magnitude, proper height, and structure
across deep convective regimes, shallow convective
regimes, and non-convecting regimes (Figure 4). When
the “Covariance Constraining” term is added to create
a physically informed loss, the CC VAE performance
improves enough to match a linear baseline (Table III).
But unlike many other image recognition tasks gen-
erative models perform, reconstructing the mean of
the convection is necessary but not sufficient – we
must capture the variance and correlation in the vertical
velocity fields. The CC VAE reconstructs variance better
than a traditional convolutional VAE and at least on par
with the linear baseline (Table III, Figure 2). Our CC
VAE is the most versatile of our models with an accurate
reconstruction performance overall at different levels of
the atmospheric column and different convective spatial
scales based on the power spectra of the three models
(Figure 2). This precision across both small and large
spatial scales revealing our CC VAEs ability to emulate
both the overall large pattern of convective plumes and
the details within convective composition. Our CC VAEs
results replicate disparate structures of convection in
both areas of high stochasticity near the atmospheric
boundary layer, characteristic of shallow convection, as
well as in the upper troposphere, where deep convective
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Fig. 1: Visualization of the latent space originally in dimension 1024, but reduced to dimension 2 by Principle
Component Analysis (PCA) [36]. The standard deviations of different types of convection the VAE learns to
cluster are embedded near corresponding clusters. This suggests the VAE learns an interpretable clustering of the
data, with means and variances both contributing to the results.

101 102

10 6

10 5

10 4

p=850hPa

101 102

p=750hPa

101 102

CRM Spacing (km)

p=500hPa

101 102

p=250hPa

Truth
CC VAE
Linear
VAE

Vertical Velocity Power Spectrum (m2 km s 2)

Fig. 2: Spectral Analysis at 4 different levels of the atmosphere comparing the test data to our best VAE and
CC VAE as well as a linear model. At small spatial scales we see the importance of the Covariance Constraint to
capture the variance native to convection (orange vs. red).

regimes dominate. At this stage CC VAEs match the
performance of our linear baseline but do not exceed it.

However, unlike the linear baseline, our VAE and CC
VAE discover the details of convective organization by
representation learning via dimensionality reduction and
feature extraction. A 2D, deterministic PCA projection of
our CC VAE latent space clusters and separates different
convective types (Figure 1). In particular, the distinction
between deep and shallow convective regimes and non-
convective regimes is encouraging (Figure 1, please visit
this link for a complete animation of the 2D Projection
of the latent space). The physical knowledge represented
in our CC VAEs latent space stands alone from other
forms of dimenionality reduction (PCA and t-SNE on

the preprocessed data) where there is no evidence of
distinction based on convective type. Furthermore, CC
VAE predictions of convective type based solely on latent
space location map back to a physically sensible pattern
over the tropics with deep convection concentrated on
land over the Amazon and African Rainforests as well as
over the Pacific Warmpool (Figure 3). These predictions
from latent space location not only map convection
type in a spatially coherent pattern, but also capture the
change in convection type with the diurnal cycle over
moist, tropical continents (Figure 3, please visit this
link for a complete animation of the tropical diurnal
cycle). When we exclusively restrict the test dataset
to an Amazon Diurnal Composite, the known coherent

https://tinyurl.com/yydhsrk6
https://tinyurl.com/y43w2rmm
https://tinyurl.com/y43w2rmm
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Fig. 3: Convection Type Predictions The diurnal composite from a ten day average at four unique times of day
are shown above. The VAE predicts the type of convection occurring in tropical locations over the course of a
typical Boreal Winter Diurnal Cycle. Blue coloring refers to a VAE prediction of deep convection, yellow to
a VAE prediction of shallow convection and green to a convective type transitioning between shallow or deep
convection. Areas where the VAE detects little convection are blanked out. Semantic similarities of the VAE
latent space are reflected in the global geospatial weather patterns.

transitions from shallow to deep convection that occur
over tropical rain-forest in response to solar heating of
the diurnal cycle correspond to monotonic trajectories
in the latent space projection, verified using both t-
SNE and PCA (Figure 5). Further tests are required
on more complex convective transitions to understand
the extent of the physical meaning of the CC VAE
latent space, but these initial positive results suggest
great potential for physically constrained VAEs as a
tool in atmospheric dynamics to uncover information
about convective transitions, storm morphology and
propagation.

We also evaluate ELBO (Equation 3) for each sample
of our test data to find unusual storm development and
activity in the dense CRM data.

ELBO allows us to determine the degree to which
a vertical velocity field, drawn from our models latent
variables is an aberration in the data. Our VAEs inherent
ability to detect anomalies in the vertical velocity
data proves to be an elegant way to identify deep
convection in a more thorough manner than traditional
vertical velocity thresholding. An example of one such
anomaly we identify is Figure 6 – in this case an
instance of two moderate storms developing in one CRM
array. This phenomena would be less straightforward
to locate through conventional methods, particularly
given the size and density of data involved. Our VAEs
attribute of anomaly detection learns characteristics of
the data instead of naively thresholding based on priors
experiences that may not reflect the composition of
the dataset. This feature provides the potential to help
identify interesting and unexpected weather phenomena
from noise – artifacts that might otherwise never be

studied in overwhelmingly large and rich datasets.

IV. CONCLUSION

We develop a VAE to reconstruct immaculate con-
vection images from a high-resolution, cloud-resolving
dataset. Our VAE, particularly once a statistically con-
strained loss function is added, captures the variance
and magnitude of distinct convective regimes. The latent
space of the VAE proves to be a potent tool for making
physically sensible predictions of convection type that
accurately reflect the tropical atmosphere and capture the
effects of solar heating through the diurnal cycle. The
unique VAE loss function allows us to use ELBO to find
anomalous storm development in a dense, high resolution
dataset that traditional methods might miss. But there
is much work to be done before a VAE could be
implemented to power stochastic parameterizations for a
climate model, likely requiring to condition the VAE on
large-scale thermodynamics via expansion of the input
vector. If successful, the ability to quickly and efficiently
generate synthetic, detailed vertical velocity fields to
help run climate models would be a valuable resource for
the atmospheric sciences and meteorology communities.
But improvements in the generative capabilities would
likely come at the expense of the representation learning
and the VAEs diagnosis of the physics of convection. We
believe these preliminary physical intuitions achieved
via representation learning represent a promising avenue
for the broader application of generative modeling for
advancing the field of atmospheric dynamics [27], [26]
and warrant further investigation to understand their full
potential.
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Fig. 4: Reconstructions The trained VAE reconstructions closely resemble those from the test dataset and
accurately predict the location, magnitude and spatial structure of convective plumes.

108 109 110 111 112 113
1

2

3

4

5
Latent Space from Amazon Average Diurnal Cycle Colored by LST Hour

0
1
2
3
4
5

6
7
8
9
10
11

12
13
14
15
16
17

18
19
20
21
22
23

Fig. 5: 2D PCA Temporal Projection All spatial locations comprising the Amazon Rainforest are averaged
together from November to February to get a single composite diurnal cycle that is fed through our trained VAE.
The colors above correlate to time of day (Local Solar Time). The results show a clear separation in representation
on the latent space of the timing of deepest convection and maximum precipitation (mid afternoon) from when
shallow convection and calmer conditions dominate (early morning).
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Fig. 6: Anomaly Detection We use the ELBO in the VAE Loss function to identify the most anomalous vertical
velocity fields. We show the 9th most anomalous field because it exhibits multiple deep convective plumes.
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