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Abstract

Understanding the details of small-scale convection and storm formation is cru-
cial to accurately represent the larger-scale planetary dynamics. Presently, at-
mospheric scientists run high-resolution, storm-resolving simulations to capture
these kilometer-scale weather details. However, because they contain abundant
information, these simulations can be overwhelming to analyze using conventional
approaches. This paper takes a data-driven approach and jointly embeds spatial
arrays of vertical wind velocities, temperatures, and water vapor information as
three "channels" of a VAE architecture. Our "multi-channel VAE" results in more
interpretable and robust latent structures than earlier work analyzing vertical veloci-
ties in isolation. Analyzing and clustering the VAE’s latent space identifies weather
patterns and their geographical manifestations in a fully unsupervised fashion. Our
approach shows that VAEs can play essential roles in analyzing high-dimensional
simulation data and extracting critical weather and climate characteristics.

1 Introduction

Long-term climate modeling is increasingly accurate, but any climate simulation high resolution
enough to explicitly resolve kilometer-scale processes controlling clouds and storms not only requires
high computational expense but also produces massive amounts of data. This large data volume
overwhelms physically-informed methods traditionally used to better understand storm organization
and how small-scale clouds connect to the large-scale circulation; even established dimensionality
reduction techniques such as Principle Component Analysis (PCA) [16] may fail to capture these
nonlinear relations. In contrast, unsupervised learning, more specifically deep generative modeling
[5, 3] can summarize explicitly-resolved storms without omitting fine-scale, nonlinear information.

Variational Autoencoders (VAEs) in particular are well-suited for dynamics discovery and under-
standing because of ability to learn meaningful latent representations of the data [11, 7, 17, 13]. VAE
applications on climate and weather data have thus far been rare. Physical processes like a 2D laminar
flow have been successfully represented by a VAE [4]. Some analysis has been conducted with VAEs
on spatio-temporal earth dynamics and with state variables like temperature and potential vorticity
data to cluster phenomena like the Polar Vortex [14, 15]. However, the training/test data applied to
the VAEs in all these cases was highly idealized and smaller in dimension than a storm-resolving
simulation output.

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

ar
X

iv
:2

11
2.

01
22

1v
1 

 [
ph

ys
ic

s.
ao

-p
h]

  1
 D

ec
 2

02
1



A single-channel VAE architecture (SVAE), modeling velocity fields in high-resolution climate
simulation has been implemented [12]; however, relationships between other variables known to be
important controls for convection were ignored. To bypass the limit of using a single physical state
variable input in the context of deep generative modeling for climate simulation analysis, we upgrade
our network architecture to that of a three-channel VAE - temperature and water vapor in addition to
vertical velocity. We hypothesize that this multi-variate approach can enable increasingly satisfying
physical clustering through a more thermodynamically-informed latent space.

2 Methods

2.1 Data and preprocessing

To provide our VAE with a multi-variate, high resolution simulation, we use output from the System
for Atmospheric Modeling (SAM), a Storm-Resolving Model (SRM). We extract 1.5e6 30x128
snapshots or "images" of vertical velocity (m/s), temperature (K), and water vapor concentration
(kg/kg) fields. The dimensionality of our images comes from the simulation design of an atmosphere
with thirty vertical levels and 128 SRM columns embedded in each grid cell of a planetary-scale
General Circulation Model (GCM) to explicitly resolve deep convection in thousands of embedded
sub-domains [6]. The high-resolution convection data comes from all tropical areas ranging from
latitudes of 20 degrees south to 20 degrees North during boreal winter. This geographically diverse
output thus includes samples ranging from moist tropical rain forests to arid deserts, spanning both
marine and continental zones. Each of the three variables is re-scaled separately from zero to one
using standard normalization techniques.

2.2 Model architecture and upgrades

We expand on a baseline VAE architecture designed in [12]. Our VAE is fully convolutional and
has four layers in the encoder and decoder. To address the inherent rate-distortion trade-off native
to VAEs [1] and align the latent variables of the model more closely with the output, we implement
a linear annealing [2] in the Kullback–Leibler (KL) Divergence term on our VAE loss function
(Equation 1). We initially weight the KL Divergence as 0 in order to prioritize learning in the encoder
for a superior latent space but increase β to 1 over 1600 epochs.

ELBO(x; θ, φ, z) = Eqφ(z|x) [log pθ(x|z)]− β ×DKL (qφ(z|x) || p(z)) , (1)

In contrast to earlier work, we interpret temperature, water vapor, and raw vertical velocity fields
as three “channels” of an image, and adopt a VAE architecture to jointly embed them. This also
increases the compression from the input vector to a latent space of 1024 from roughly 4x in [12] to
10x. We also continue to use a SVAE trained on vertical velocity fields as a baseline for comparisons.

3 Results

Latent space credibility and exploration By expanding the input to three high-resolution vari-
ables, we are asking substantially more of our encoder in terms of dimensionality reduction and
feature extraction. There is no guarantee this architecture can create the same physically interpretable
latent space as the SVAE in [12]. However, we can gain better understanding of the latent space by
"colorizing" it by the magnitude of the corresponding vertical velocity field in the test dataset and
its land fraction. In the tropics there are regions of intense convection, such as over the rain-forests
and hot tropical waters of the Pacific warm pool; however, there will also be dry regions like deserts
where deep convection will be suppressed. We want such known disparate convection types to be
separated in some capacity on the latent space for it to be useful for physical analysis. When our
latent space is colorized (Fig 1, a and b), we do see a clear sorting by magnitude, and convection over
land preferentially appearing on different parts of the latent space than convection over the ocean.
The full animated visual can be found at this link. This suggests that the added complexity is not
overwhelming the VAE, and we now ask: What are the advantages of the MVAE compared to the
SVAE when it comes to anomaly detection and regime classification?
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Anomaly detection We determine the similarity between the trained VAEs and their respective
latent spaces by first looking at density estimation properties. To test whether the MVAE adds value
compared to the SVAE, we calculate the Evidence Lower Bound (ELBO) for both VAEs at each
of the 1.5e6 samples in the test dataset. The higher this ELBO score the more anomalous the VAE
finds the convection sample. We look at just the top five percent of ELBO anomalies for both the
SVAE and MVAE. We then plot the frequency at which these anomalies occurred at each grid-cell
in the tropics (Fig 2 b and c) and ask whether the results agree with domain knowledge of where
geographically rare convective events tend to occur. Immediately we see different patterns lit up
by the different VAEs. The SVAE hones in on continental zones, especially over more arid regions
(Fig 2b). The MVAE highlights areas over both land and sea (Fig 2c), which is physically satisfying
since rare storms are known to occur in both regions. Specifically, the MVAE finds deep convection
over the tropical rain forests and the Inter-Tropical Convergence Zone to be most anomalous. But
more significantly than just disagreeing about the geographic location of the most extreme anomalies,
the two VAEs each find anomalies of very different vertical structures. In the median vertical profile
in each anomaly group, the SVAE emphasizes strong convection near the surface of the earth, which
is not typically recognized as an interesting phenomenon in the atmospheric sciences, whereas the
MVAE focuses on convection deep in the upper Troposphere, a reassuringly familiar extreme tropical
storm structure (Fig 2a).

Data driven convection regimes To analyze the latent space in an objective fashion, we bring in
another unsupervised learning algorithm: K-Means Clustering. We cluster separately on both latent
spaces to determine if the latent structures are different enough for the MVAE to highlight different
types of convective organization. Our analysis turns up three distinct clusters in both the latent spaces
(Figs 3). However, there are significant differences in the vertical profiles and geographic location of
the regimes. The SVAE latent space successfully separates the deepest convection from shallower
forms that occur in the subtropical ocean basins (Fig 3a and g, blue lines). But the third cluster in the
SVAE group, similar to the anomalies it finds (Fig 2b), reflects the same puzzling mode of shallow
convection over drier land areas (Fig 3d, blue line). The MVAE clusters deep convection similarly to
the SVAE but attractively does not make a distinct regime for the mode of dry, continental shallow
convection (Fig 3 d,g green vs. blue). Instead, unlike the SVAE, the subtropical shallow convective
mode is satisfyingly separated into two distinct sub-regions – one in the Central Pacific/Atlantic,
and another in the eastern parts of these ocean basins where especially distinct stratocumulus clouds
are known to occur [8, 9, 10]. Since these two forms of low cloud have different characteristic
horizontal eddy scales, we speculate that the inclusion of water vapor to the input of the MVAE
down-weights the importance of the dry, shallow mode (Fig 3d; green vs. blue) and allows a more
satisfying physical clustering of convective regimes.

4 Conclusion and broader impacts

We explore the ability of a Variational Autoencoder (VAE) to find a physically interpretable represen-
tation of a multi-variate, high-resolution climate simulation. We find that adding multiple variables
as "channels" to our VAE highlights drastically different convection anomaly types and geographic
locations compared to a VAE trained only on a single variable. The different regimes identified by
clustering both latent spaces suggest there is value to a multi-variate approach using both dynamic and
thermodynamic variables to cluster convection regimes successfully in a fully unsupervised fashion. It
is possible that this multi-variate approach would also be valuable for global storm-resolving climate
simulations that produce even more data and augment traditional physically-informed approaches to
clustering the cloud regime-dependence of climate change projections.
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Figure 1: The 3D projection of Principle Component Analysis of our multi-channel VAE latent
space. We colorize by land/sea fraction and intensity of the vertical velocity field at each sample in
the test dataset. The organization of this latent structure appears physically interpretable.
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Figure 2: The vertical profiles (a, solid lines), 25th and 75th percentiles (a, dashed lines) and
geographic distributions (b,c,d) of convection anomalies defined by our VAEs. We threshold the test
data by the Evidence Lower Bound (ELBO) anomalies and examine only the top 5 percent of ELBO
scores. The multi-channel VAE finds anomalies of different structure and geographic location than
the single-channel VAE.
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Figure 3: The results of K-Means clustering on the latent space of both VAEs separately. We find
that three is the largest number of clusters in which each convective regime has both a distinct vertical
profile (a,d,g) and distinct geographic pattern of frequency of occurrence (b,c,e,f,h,i). However, the
three regimes found in each latent do not match suggesting unique organization in each VAE.
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